Land Cover Classification and Identification

Xintian (Stella) Li, David (Yuanrong) Pan, Jacey Chang

01

Introduction

Problem and Dataset

CONTENTS

03

Machine Learning

K Means, SVM and Random Forest

02 Data Preprocessing

Relabeling and PCA

Deep Learning

04

CNN (Binary & Multiclass), Transfer Learning (MobileNet & VGG)

Introduction

01

Problem and Dataset

Why Land Cover Classification?

Problem

Due to human activities, land cover is changing rapidly over the recent decades.

Motivations

Monitoring land cover changes help us understand and evaluate the urban development process and its associated environmental impacts

Technical Possibility

The proliferation of satellite image data and the emergence of advanced machine learning technologies make it possible to identify land cover and quantify the changes automatically.

EuroSAT Dataset

a dataset based on Sentinel-2 satellite images and consisting out of 10 classes with in total 27,000 labeled images, each 64 pixel * 64 pixel * 3 channels.

The 10 labels: Industrial Buildings, Residential Buildings, Annual Crop, Permanent Crop, River, Sea & Lake, Herbaceous Vegetation, Highway, Pasture, Forest

Visualize the Images

Residential

River

River

SeaLake

SeaLake

Data Preprocessing

Relabel and PCA

Relabel the Data

We relabel the data to make the data **balanced** and faster to train.

Examples from each new label

	A CONT		7.4 6	Original Label	New Label	
	ARAS -		-	AnnualCrop		
	A State			PermanentCrop	Agriculture	
Agriculture	Agriculture	Forest	Forest	Pasture		
Pre Leit	A	- Heren		River		
	Sec. 1	1-		SeaLake	Water	
	and the second		AN VAS	Residential		
HerbaceousVegetation	HerbaceousVegetation	— — — Highway — — —	— — — — — Highway — — — — —	Industrial	Building	
	1			Forest	Forest	
ATTEN AND L				HerbaceousVegetation	HerbaceousVegetation	
A STREET	A STATIST			Highway	Highway	
BUILDING	Bundind	IN ATOP	lorat Or			

Dimensionality Reduction: PCA

Dimensionality reduction is needed because huge data size and thus a long training time with the full dataset.

Visualize PCA Components

First 30 PC standardized, balanced dataset

It is shown in the PCA that the average hue of images matters, especially how much "yellowness" in the image.

O3 Machine Learning

K-Means, SVM and Random Forest

KMeans Clusters

We first split the 30-pc dimensionality-reduced data into a 70% training set and a 30% testing test.

Then we tried 6-cluster KMeans as an unsupervised model to see whether the data were easy to separate.

cluster	0	1	2	3	4	5
actual_label						
Agriculture	129	219	146	53	166	7
Building	202	24	170	67	257	0
Forest	8	136	0	0	0	576
HerbaceousVegetation	242	161	124	18	151	24
Highway	235	232	38	41	135	39
Water	160	235	4	0	102	219

Except for recognizing "Forest" as a distinct cluster (cluster 5) with an rough accuracy around 67%,

K-Means did a poor job to distinguish different labels.

SVM Classifier

Then we used SVM classifier. We did cross-validation, and used grid search several times to narrow down the best parameters.

1	pd.DataFrame	(svc_grid	l2.cv_resu	lts_)[
---	--------------	-----------	------------	--------

2 ['params','mean_test_score','std_test_score','rank_test_score']

3].sort_values(by='rank_test_score')

	params	mean_test_score	<pre>std_test_score</pre>	rank_test_score
2	{'estimator_C': 15, 'estimator_kernel': 'rbf'}	0.671429	0.012084	1
3	{'estimator_C': 20, 'estimator_kernel': 'rbf'}	0.669841	0.011362	2
4	{'estimator_C': 30, 'estimator_kernel': 'rbf'}	0.669544	0.011607	3
1	{'estimator_C': 10, 'estimator_kernel': 'rbf'}	0.669345	0.009516	4
0	{'estimatorC': 1, 'estimatorkernel': 'rbf'}	0.629266	0.012061	5

The best accuracy is about 67%, with an rbf kernel and parameter C=15

predicted_label	Agriculture	Building	Forest	HerbaceousVegetation	Highway	Water
actual_label						
Agriculture	411	66	16	103	85	39
Building	23	559	1	70	53	14
Forest	14	1	698	1	0	6
lerbaceousVegetation	60	94	10	489	41	26
Highway	103	106	11	61	331	108
Water	33	22	96	21	87	461

The confusion matrix for the prediction of the best SVM model

Random Forest Classifier

Random forest classifier had a similar performance with SVM classifier: The best model has a 68% testing accuracy

	predicted_label	Agriculture	Building	Forest	Herba	ceousVegetation	Highway	Water
	actual_label							
	Agriculture	454	86	10		80	66	24
	Building	16	583	0		61	47	13
	Forest	19	0	678		2	0	21
He	erbaceousVegetation	101	90	6		440	65	18
	Highway	128	146	2		32	359	53
	Water	37	41	45		15	147	435
		C	Confu	sionı	matr	īx		
		pa	arams m	ean_test	_score	std_test_score	rank_test	score
8	{'max_features': 'auto',	'n_estimators	: 400}	0.6	680357	0.007448		1
1	{'max_features': 'sqrt',	'n_estimators	: 200}	0.6	678869	0.007517		2
5	{'max_features': 'log2',	'n_estimators	: 400}	0.6	677282	0.011021		3
2	{'max_features': 'sqrt',	'n_estimators	: 400}	0.6	676984	0.010959		4
7	{'max_features': 'auto',	'n_estimators	: 200}	0.6	675794	0.008566		5
4	{'max_features': 'log2',	'n_estimators	: 200}	0.6	672024	0.009893		6
6	{'max_features': 'auto',	'n_estimators	: 100}	0.6	670734	0.007979		7
3	{'max_features': 'log2',	'n_estimators	: 100}	0.6	667956	0.013266		8
0	{'max_features': 'sqrt',	'n_estimators	: 100}	0.6	666865	0.012826		9

Rank of model accuracies using different parameters

04

Deep Learning

CNN, Transfer Learning Models

Convolutional Neural Network

First, we tried to use CNN to solve a simple 2-label classification question. We picked two classes which are very different from each other, buildings and water. Then we created a subset of data with 2,400 images in each of the two categories and perform CNN on the dataset.

Building vs. Water

Water

Water

Examples of Building and Water

Water

Water

Convolutional Neural Network (Binary Classification)

Model: "sequential_2"

Layer (type)	Output	Shape	Param #
conv2d_8 (Conv2D)	(None,	64, 64, 32)	896
max_pooling2d_8 (MaxPooling2	(None,	32, 32, 32)	0
dropout_10 (Dropout)	(None,	32, 32, 32)	0
flatten_2 (Flatten)	(None,	32768)	0
dense_4 (Dense)	(None,	100)	3276900
dropout_11 (Dropout)	(None,	100)	0
dense_5 (Dense)	(None,	2)	202
Total params: 3,277,998 Trainable params: 3,277,998 Non-trainable params: 0			

Even a simple CNN network with only 1 convolutional layer and 1 dense layer can predict the 2 labels with a test accuracy of **96%**

Convolutional Neural Network (Binary Classification)

The model predict all the buildings correctly. The ROC curve is very close to the upper left corner, also indicating a good diagnosis ability of the 2-label classifier.

Convolutional Neural Network (Multi-class Classification)

The multi-class classification (6 labels) has a test accuracy of **83%**. The model is best at predicting Label 1 (Forest), not very good at predicting Label 0 and 5 (Agriculture and Water).

The accuracy is much higher relative to the ML classifiers.

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	64, 64, 32)	896
<pre>max_pooling2d (MaxPooling2D)</pre>	(None,	32, 32, 32)	0
dropout (Dropout)	(None,	32, 32, 32)	0
conv2d_1 (Conv2D)	(None,	32, 32, 64)	18496
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	16, 16, 64)	0
dropout_1 (Dropout)	(None,	16, 16, 64)	0
conv2d_2 (Conv2D)	(None,	16, 16, 128)	73856
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None,	8, 8, 128)	0
dropout_2 (Dropout)	(None,	8, 8, 128)	0
conv2d_3 (Conv2D)	(None,	8, 8, 256)	295168
<pre>max_pooling2d_3 (MaxPooling2</pre>	(None,	4, 4, 256)	0
dropout_3 (Dropout)	(None,	4, 4, 256)	0
flatten (Flatten)	(None,	4096)	0
dense (Dense)	(None,	120)	491640
dropout_4 (Dropout)	(None,	120)	0
dense_1 (Dense)	(None,	6)	726
Total params: 880,782 Trainable params: 880,782 Non-trainable params: 0			

Transfer Learning Models

Then we imported two pre-trained models (VGG16 and MobileNetV2) to fit and test on our own datasets.

We set input shape to (64, 64, 3), froze the convolutional layers of the pretrained model, transferred to our datasets and updated the dense layers to get the output labels.

VGG16 accuracy: 85.5% MobileNetV2: accuracy: 84.8%

Transfer Learning Models

MobileNetV2: accuracy: 84.8%

Thank you!

If you have any questions, please contact us at: xintianl@upenn.edu yrpan@upenn.edu jzchang@upenn.edu